Probabilistic and Dynamical Properties of (semi)-group Actions

January 7 to 18, 2008
USACH, Santiago, Chile.


Dear Friends and Colleges
It is a pleasure to announce our meeting which will be held at the University of Santiago ( between January 7 and January 18 (2008). This meeting will focus on probabilistic and dynamical aspects of group and semigroup actions. The idea is to gather around 40 mathematicians interested in these topics and to create a working atmosphere with plenty of time for informal talks and discussions. The main scheduled activities will be the following three minicourses,

C. Connell (Indiana University): Poisson boundaries for hyperbolic groups.

A. Karlsson (Royal Institute of Technology): A non commutative ergodic theorem and applications.

K. Simon (Technical University of Budapest): Hausdorff dimension and absolute continuity of invariant measures.

A. Bis, Univ. Lodz
C. Connell, Indiana University
Y. de Cornulier, Univ. Rennes
B. Deroin, Univ. Paris-Sud
R. Hidalgo, UTFSM Chile
G. Honorato, USACH
G. Iommi, PUC Chile
E. Jorquera, Univ. de Chile
A. Karlsson, Royal Inst. of Technology
J. Kiwi, PUC Chile
V. Kleptsyn, Univ. Rennes
M. Martínez, Univ. Rep. Uruguay
S. Matsumoto, Univ. Nihon, Japan
C. Moreira, IMPA, Brasil
A. Navas, USACH
S. Plaza, USACH
M. Ponce, PUC Chile
D. Pons, UAB Chile
A. Rojas, Univ. de Chile
M. Schraudner, Univ. Chile
K. Simon, Tech. Univ. of Budapest
A. Zuk, Univ. Paris VII

A. Bis:  Partial variational principle for groups and entropies for semigroups
B. Deroin: On the harmonic foliated measures
V. Kleptsyn: Persistence of zero Lyapunov exponents
M. Martínez: Hedlund´s theorem for compact minimal laminations
S. Matsumoto: The parameter rigid flows on 3-manifolds
C. Moreira: On stable intersections of regular Cantor sets
A. Zuk:  Automata groups
Y. de Cornulier: Lie groups and asymptotic cones
A. Navas: Left orderable groups

Program PDF